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Abstract

Insect metamorphosis is regulated by two main hormones:

ecdysone (20E), which promotes molting, and juvenile

hormone (JH), which inhibits adult morphogenesis. The

transduction mechanisms for the respective hormonal

signals include the transcription factors Krüppel homolog

1 (Kr‐h1) and E93, which are JH‐ and 20E‐dependent,
respectively. Kr‐h1 is the main effector of the antimeta-

morphic action of JH, while E93 is a key promoter of

metamorphosis. The ancestral regulatory axis of metamor-

phosis, which operates in insects with hemimetabolan

(gradual) metamorphosis and is known as the MEKRE93

pathway, is based on Kr‐h1 repression of E93. In the last

juvenile stage, when the production of JH dramatically

decreases, Kr‐h1 expression is almost completely inter-

rupted, E93 becomes upregulated and metamorphosis

proceeds. The holometabolan (complete) metamorphosis

mode of development includes the peculiar pupal stage, a

sort of intermediate between the final larval instar and

the adult stage. In holometabolan species, Broad‐Complex

(BR‐C) transcription factors determine the pupal stage

and E93 stimulates the expression of BR‐C in the prepupa.

The MEKRE93 pathway is conserved in holometabolan

insects, which have added the E93/BR‐C interaction loop

to the ancestral (hemimetabolan) pathway during the

evolution from hemimetaboly to holometaboly.
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1 | INTRODUCTION

Metamorphosis is a key innovation in insect evolution, wherein the individual acquires characteristic adult features

and stops molting during postembryonic development. The ancestral metamorphosis mode was hemimetaboly, in

which the embryogenesis gives rise to a first‐instar nymph that features the essential adult body structure. The

nymphs grow gradually and the final molt to the adult stage completes the formation of functional wings and

genitalia. Another metamorphosis mode known as holometaboly emerged from hemimetaboly; this is characterized

by embryogenesis that produces a larva with a body form that may be substantially different from that of the adult.

The larva grows through various stages until molting to the pupal stage, which bridges the gap between the

morphologically divergent larva and that of the winged and reproductively competent adult (Belles, 2011).

In both modes, metamorphosis is regulated by two major hormones: the juvenile hormone (JH), chemically a

terpenoid, and ecdysone plus its biologically active derivative, 20‐hydroxyecdysone (20E), which are steroids

(Nijhout, 1994). The function of these hormones is underpinned by the mechanisms that transduce the hormonal

signal through a hierarchical pathway of gene activation. The 20E signaling pathway was first described in the

1990s, whereas the most important details of the JH pathway were only revealed recently. The present review

updates the information on these pathways, focusing on the role of two emblematic factors, Krüppel homolog

1 (Kr‐h1) and E93, and their key role in the regulation of insect metamorphosis.

2 | THE ECDYSONE AND JH SIGNALING PATHWAYS

Initial work that unveiled the main elements of the ecdysone signaling pathway was carried out in the fly Drosophila

melanogaster, as described in comprehensive reviews (King‐Jones & Thummel, 2005; Ou & King‐Jones, 2013). Early
studies by Clever, Karlson and Ashburner established a model wherein ecdysone would bind to its receptor and

induce the expression of early genes, whose respective products (the early proteins) would induce the expression of

late genes. At the same time, the ecdysone receptor complex would repress the expression of the late genes, and

the early proteins would repress the expression of their own genes. The so‐called Ashburner model was confirmed

early in the 1990s by the identification of a number of genes corresponding to the ecdysone receptor (EcR) and

its receptor partner, Ultraspiracle (USP), as well as a number of early and late genes encoding signal transducers

(Hill, Billas, Bonneton, Graham, & Lawrence, 2013; King‐Jones & Thummel, 2005; Ou & King‐Jones, 2013). Among

the early response genes discovered to date, Broad‐Complex (BR‐C) and E93 are of particular interest for this

review, as we shall see below.

The JH signaling pathway was reviewed recently (Jindra, Belles, & Shinoda, 2015). Relative to the discovery of

the receptor for 20E, it took additional two decades before a JH receptor has been established. In vitro and in vivo

genetic studies definitively demonstrated that Methoprene‐tolerant (Met), a transcription factor belonging to the

basic helix–loop–helix‐Per‐ARNT‐Sim (bHLH‐PAS) family, behaves as a genuine JH‐specific receptor (Bittova et al.,

2019; Charles et al., 2011; Jindra, Uhlirova, Charles, Smykal, & Hill, 2015). Previously, RNAi depletion of Met in the

beetle Tribolium castaneum was shown to induce a precocious metamorphosis to pupa, which provided a direct

relation between Met and JH signaling (Konopova & Jindra, 2007). RNAi experiments also demonstrated the role of

Met as a transducer of the JH signal in hemimetabolan species, from cockroaches, such as Blattella germanica

(Lozano & Belles, 2014) to bugs, such as Pyrrhocoris apterus (Konopova, Smykal, & Jindra, 2011). The absence

of developmental phenotypes in the Met mutants of D. melanogaster was explained later, because in this species

Met has a paralog gene, germ cell‐expressed (gce), with partially redundant functions with respect to Met, while

T. castaneum has only one Met gene (Jindra, Belles, et al., 2015). As in the case of 20E receptor, the JH receptor is

not a single protein. JH binding stimulates Met (or gce) to form a complex with another bHLH‐PAS protein called

Taiman (Tai, also known as FISC or SRC; Jindra, Belles, et al., 2015). In the cockroach B. germanica, RNAi

experiments specifically depleting different Tai isoforms have demonstrated that Tai mediates the inhibitory effects
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of JH on metamorphosis (Lozano, Kayukawa, Shinoda, & Belles, 2014). The JH‐Met + Tai complex, in turn, activates

the transcription of the gene Krüppel homolog 1 (Kr‐h1), the main effector of the antimetamorphic action of JH.

3 | KRÜPPEL HOMOLOG 1, THE METAMORPHOSIS DOORKEEPER

Kr‐h1 was discovered in D. melanogaster as a gene with structural similarity to the segmentation gene Krüppel, with

which it shares the zinc‐finger motifs and amino acid spacers connecting them. In D. melanogaster, Kr‐h1 expresses

two major isoforms—α and β. The α isoform predominates in postembryonic stages and was initially reported as

mediating ecdysone signaling in the larval–pupal transition (Beck, Pecasse, & Richards, 2004; Pecasse, Beck, Ruiz, &

Richards, 2000), whereas the β isoform is abundantly expressed in embryonic neuronal cells (Beck et al., 2004). The

first evidence to connect Kr‐h1 and JH was also obtained in D. melanogaster. In this fly, the adult epidermis of the

abdomen derives from larval histoblasts, which start proliferating after puparium formation. Administration of JH

before the prepupal stage prevents the normal differentiation of the abdominal epidermis and the bristles that

should be formed in the adult are shorter or simply do not develop (Ashburner, 1970). Similarly, Kr‐h1 expressed

ectopically in the abdominal epidermis during metamorphosis of D. melanogaster also resulted in missing or short

bristles, thereby suggesting that Kr‐h1 mediates the antimetamorphic action of JH (Minakuchi, Zhou, & Riddiford,

2008). In T. castaneum, RNAi depletion of Kr‐h1 in young larvae caused a precocious larval–pupal transformation,

providing clear evidence that Kr‐h1 represses metamorphosis and works downstream from Met in the JH signaling

pathway (Minakuchi, Namiki, & Shinoda, 2009). The antimetamorphic action of Kr‐h1 was generalized to the

hemimetabolan species in two parallel works conducted in the cockroach B. germanica (Lozano & Belles, 2011) and

the bugs P. apterus and Rhodnius prolixus (Konopova et al., 2011), respectively. In these two studies, RNAi

experiments showed that Kr‐h1 depletion in nymphs in the penultimate or antepenultimate nymphal stage triggers

precocious metamorphosis.

4 | E93, THE KEY TO METAMORPHOSIS

E93 is an early gene in the ecdysone signaling cascade that is specifically expressed in late prepupae of

D. melanogaster. The gene encodes for a protein with RHF domains that are significantly similar to pipsqueak motifs,

which was found to be a key player in the degeneration process of the salivary glands during D. melanogaster

metamorphosis (Baehrecke & Thummel, 1995; Lee et al., 2000; Woodard, Baehrecke, & Thummel, 1994). However, the

action of E93 in metamorphosis is not restricted to the regulation of degeneration processes, as it also plays

morphogenetic roles. Mou, Duncan, Baehrecke, and Duncan (2012) observed that E93 is widely expressed in adult cells

of D. melanogaster pupa, as it is required for patterning processes. This suggested that E93 might play a general role in

changing the responsiveness of target genes during metamorphosis. Studying the induction of the Distal‐less (Dll) gene

within bract cells of the pupal leg using epidermal growth factor (EGF) receptor signaling, Mou et al. (2012), found that

E93 causes Dll to become responsive to EGF receptor signaling, indicating that E93 is both necessary and sufficient for

directing this switch. These results suggested that E93 controls the responsiveness of many other target genes because

it is generally required for patterning during metamorphosis (Mou et al., 2012). RNAi experiments carried out 1 year

later (Ureña, Manjón, Franch‐Marro, & Martín, 2014) showed that E93‐depleted D. melanogaster larvae are able to

pupate but die at the end of the pupal stage. In the beetle T. castaneum, E93 depletion by RNAi prevented the

pupal–adult transition, resulting in the formation of a supernumerary second pupa. Similar results were obtained in the

cockroach B. germanica, where E93 depletion in nymphs prevented the nymphal–adult transition, giving rise to

reiterated supernumerary nymphal instars (Ureña et al., 2014). Subsequently, Belles and Santos (2014) showed that the

expression of E93 in juvenile nymphs of B. germanica is inhibited by the transcription factor Krüppel homolog 1 (Kr‐h1),
which uncovered the essential mechanism by which JH represses metamorphosis.
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5 | BROAD ‐COMPLEX, THE THIRD PLAYER

BR‐C is an early gene of the ecdysone signaling pathway that encodes for different protein isoforms of the

BTB/POZ family of C2H2 zinc‐finger transcription factors. In D. melanogaster, BR‐C expresses four isoforms

depending on which zinc finger module is incorporated into the protein. Mutation experiments that disrupted

all BR‐C isoforms resulted in late larval lethality, suggesting their essential role in pupal morphogenesis

(Kiss, Beaton, Tardiff, Fristrom, & Fristrom, 1988). Further studies showed that BR‐C determines the

larval–pupal transformation in D. melanogaster and other holometabolan species such as the lepidopteran

Manduca sexta (Karim, Guild, & Thummel, 1993; Zhou, Hiruma, Shinoda, & Riddiford, 1998). BR‐C depletion

using a recombinant Sindbis virus expressing a double‐stranded RNA targeting BR‐C in the silkworm Bombyx

mori (Uhlirova et al., 2003), or using systemic RNAi in the beetle T. castaneum (Konopova & Jindra, 2008;

Parthasarathy, Tan, Bai, & Palli, 2008; Suzuki, Truman, & Riddiford, 2008) and the neuropteran Chrysopa perla

(Konopova & Jindra, 2008), further confirmed that BR‐C is key for pupal differentiation. In hemimetabolan

species, BR‐C has been depleted with RNAi in the cockroach B. germanica (Huang, Lozano, & Belles, 2013)

and the bugs Oncopeltus fasciatus (Erezyilmaz, Riddiford, & Truman, 2006) and P. apterus (Konopova & Jindra,

2008). In contrast with observations in holometabolan species, results showed that the main role of BR‐C in the

postembryonic development of hemimetabolan species is to regulate the growth of the wing primordia.

6 | THE MEKRE93 PATHWAY

The first indication that Kr‐h1 represses E93 expression was obtained in the cockroach B. germanica, upon

observing that Kr‐h1 depletion triggers a remarkable stimulation of E93 (Belles & Santos, 2014). This led to

propose the MEKRE93 pathway as the essential axis regulating insect metamorphosis. Accordingly, in

nymph–nymph transitions, JH acts through its receptor Met‐Tai to induce the Kr‐h1 expression, while Kr‐h1
represses the expression of E93. In turn, the fall of JH production in the final juvenile stage interrupts Kr‐h1

expression, thus allowing a strong induction of E93 through ecdysone signaling, which triggers adult

morphogenesis (Figure 1). RNAi experiments in B. germanica also revealed that E93 depletion increases Kr‐h1

expression (Belles & Santos, 2014; Ureña et al., 2014), which indicates that Kr‐h1 and E93 are reciprocally

F IGURE 1 The MEKRE93 pathway in hemimetabolan and holometabolan metamorphoses. In the nymph‐nymph
transitions of the ancestral, hemimetabolan metamorphosis, the JH (through Met‐Tai) induces the expression of
Kr‐h1, which, in turn, represses the expression of E93. In contrast, the fall of JH production in the final juvenile
stage, interrupts the expression of Kr‐h1 and allows a strong induction of E93 by the ecdysone signaling, which

triggers metamorphosis. The main difference between the hemimetabolan and holometabolan modes is the
regulation (and function) of BR‐C: in the hemimetabolan mode it is mainly involved in promoting the growth of
wing primordia, whereas in the holometabolan mode, BR‐C triggers the formation of the pupa. For studies that

have led to the model, please see citations in the text

4 of 8 | BELLES



repressed. The inhibitory action of Kr‐h1 upon E93 expression was later corroborated in the holometabolan T.

castaneum (Chafino et al., 2019; Ureña, Chafino, Manjón, Franch‐Marro, & Martín, 2016), which extended the

MEKRE93 pathway to holometabolan metamorphosis.

The main difference between the hemimetabolan and holometabolan metamorphoses is the regulation

and function of BR‐C. As shown in B. germanica, BR‐C is mainly involved in promoting the growth of

wing primordia in the hemimetabolan mode. BR‐C expression is induced by JH and Kr‐h1 during juvenile

stages (Huang et al., 2013), but it is repressed by E93 in the metamorphic transition (Ureña et al., 2014).

RNAi studies in the cricket Gryllus bimaculatus, also a hemimetabolan species, confirmed the mentioned

interactions and additionally revealed that BR‐C and Kr‐h1 are reciprocally activated (Ishimaru, Tomonari,

Watanabe, Noji, & Mito, 2019). In contrast, BR‐C triggers pupa formation in holometabolan species,

where, intriguingly, JH inhibits the expression of BR‐C during larval stages and stimulates BR‐C expression

after pupal commitment (Zhou et al., 1998). As shown in T. castaneum, E93 is also involved in triggering

the pupal stage, as it promotes BR‐C expression (Chafino et al., 2019). The MEKRE93 pathway is, therefore,

conserved in the holometabolan species, which have added the E93/BR‐C interaction loop to the

ancestral (hemimetabolan) pathway during the evolutionary transition from hemimetaboly to holometaboly

(Figure 1).

7 | MOLECULAR MECHANISMS

Regarding the mechanism by which JH stimulates the Kr‐h1 expression, Kayukawa et al. (2012) used Kr‐h1 from B.

mori and reporter assays and identified a JH response element (kJHRE) comprising 141 nucleotides and located

~2 kb upstream from the gene transcription start site. Remarkably, the core region of kJHRE (GGCCTCCACGTG)

contains a canonical E‐box sequence to which Met and other bHLH‐PAS proteins can bind. Interestingly, the JHREs

previously described for other JH‐dependent genes (see Riddiford, 2008 for a review), do not contain this E‐box,
but it is present in the Kr‐h1 promoter of the mosquito Aedes aegypti (Cui, Sui, Xu, Zhu, & Palli, 2014; Shin, Zou,

Saha, & Raikhel, 2012).

In holometabolan models, Kr‐h1 prevents the larva–pupa transformation triggered by BR‐C (Kayukawa

et al., 2014; Minakuchi et al., 2009, 2008). Subsequent work in B. mori led to the identification of a Kr‐h1
binding site (KBS) in the BR‐C promoter (Kayukawa et al., 2016). As BR‐C is activated by 20E in the absence

of JH, the authors suggested Kr‐h1 may bind in the vicinity of the ecdysone response elements (EcREs) of BR‐C,

so as to prevent 20E activation. In line with this idea, a 30‐bp sequence required for Kr‐h1 binding, called

KBS core region (GACCTACGCTAACGCTAAATAGAGTTCCGA), was identified in the BR‐C promoter and as

conjectured is located between two EcREs. This location, and further analysis of the 20E and JH regulation

of the BR‐C promoter, led the authors to suggest that Kr‐h1 expression is induced by JH via Met/Tai and

two Kr‐h1 molecules bind to the KBS core region of BR‐C, so that 20E cannot induce its expression (Kayukawa

et al., 2016).

The same research group hypothesized that a similar mechanism may be involved when Kr‐h1 represses E93

(Kayukawa, Jouraku, Ito, & Shinoda, 2017). Thus, searching for sequences similar to the BR‐C KBS core region in the

promoter of B. mori E93 led to the discovery of a KBS candidate located near a putative EcRE. Using a B. mori cell

line and reporter assays, the researchers observed that the E93 reporter is activated by 20E, whereas JH represses

this activation. Mutations in the putative KBS region prevented this JHA‐dependent repression and deletion of the

putative EcRE abolished 20E‐induced expression. These observations and additional RNAi experiments confirmed

that E93 is activated by 20E via the EcRE and 20E‐induction is repressed by JH and Kr‐h1 via the KBS (Kayukawa

et al., 2017).
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8 | DOWNSTREAM E93

The pathway regulating metamorphosis does not end with E93, as this factor activates the genes that contribute

to the formation of the adult. The aforementioned Mou et al. (2012) study, which revealed that E93 makes Dll

responsive to EGF receptor signaling, already suggested that E93 may regulate the responsiveness of other target

genes. Another example of E93 downstream effects is its enhancing activity upon decapentaplegic (dpp) expression

in the wing of D. melanogaster (Wang et al., 2019). E93 knockdown in the wing and ChIP‐seq analysis revealed that

dpp is a downstream target of E93, while ChIP‐PCR analysis and dual‐luciferase reporter assays confirmed E93

can bind to the dpp promoter, enhancing its activity. Moreover, E93 overexpression in Drosophila S2 cells increases

dpp expression, whereas this expression decreases after E93 knockdown in the wing. These results indicate that

E93 modulates the dpp signaling pathway, thus regulating wing development during D. melanogastermetamorphosis

(Wang et al., 2019). Finally, a noteworthy study by Uyehara et al. (2017) has shown that E93 acts as a chromatin

modifier, enabling or preventing expression in given genetic regions. This is further evidence of the role of E93

as a master regulator driving metamorphosis forward and unveils a powerful mechanism for this general function

based on the modulation of chromatin accessibility.
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