Overlooked cryptic diversity in *Muschampia* (Lepidoptera: Hesperiidae) adds two species to the European butterfly fauna

JOAN C. HINOJOSA¹, LEONARDO DAPPORTO², ERNST BROCKMANN³, VLAD DINCA⁴, VALENTIN TIKHONOV⁵, NICK GRISHIN⁶,⁷,⁸, VLADIMIR A. LUKHTANOV⁹, and ROGER VILA¹,⁎

¹Institut de Biologia Evolutive (CSIC-UPF), Passeig de la Barceloneta 37-49, 08003, Barcelona, Spain
²ZEN lab, Dipartimento di Biologia, University of Florence, via Madonnina del Piano 6, 50019 Sesto Fiorentino, Italy
³Laubacher Straße 4, 35423 Lich, Hessen, Germany
⁴Ecology and Genetics Research Unit, PO Box 3000, University of Oulu, 90014, Finland
⁵North Caucasus Federal University, Ulitsa Pushkina 1, Stavropol 355009, Russia
⁶Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
⁷Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
⁸Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
⁹Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya Naberezhnaya 1, St. Petersurg 199034, Russia

Received 14 May 2020; revised 2 November 2020; accepted for publication 9 November 2020

Cryptic species represent a challenge for documenting global biodiversity. Even in well-studied groups, such as European butterflies, the application of integrative approaches has allowed the recognition of an unexpected number of cryptic taxa. Here, we combine the analysis of mitochondrial (cytochrome *c* oxidase I, *COI*) and nuclear (internal transcribed spacer 2, ITS2) markers with geometric morphometrics of the male genitalia to study diversity within the butterfly *Muschampia proto*. The nuclear marker reveals three well-supported and deeply diverged lineages, which are also detected based on mitochondrial DNA, although the latter recovers one of them as paraphyletic with poor support. These lineages also present distinct male genital characters, which allow blind assignment of > 97% of specimens when applying a jackknife procedure. We conclude that *M. proto* comprises three cryptic species that started to differentiate ~2 Mya: *M. proto*, distributed in northern Africa, the Iberian Peninsula and southern France; *Muschampia alta* comb. & stat. nov., occurring in southern Italy and the Balkan Peninsula; and *Muschampia proteides*, present in the easternmost part of Europe, the Near East and Iran. This discovery adds two new species to the European butterfly fauna and highlights the necessity to continue investigating potential cryptic diversity.

INTRODUCTION

The increasing number of cryptic species discovered in recent years (Struck et al., 2018) demonstrates that our knowledge of biodiversity is still incomplete. This limitation can lead to key taxa in need of conservation being overlooked and can hamper a comprehensive understanding of evolutionary processes and ecosystem functioning (Bickford et al., 2007; Alizon et al., 2008; Ceballos & Ehrlich, 2009; Esteban & Finlay, 2010). Other than representing a substantial fraction of alpha diversity (Bickford et al., 2007; Pfenninger & Schwenk, 2007), cryptic species have been shown to encompass a considerable percentage of regional beta
diversity, owing to their tendency to show allopatric or parapatric distributions (Vodá et al., 2015). In relatively well-studied taxa, such as European butterflies, nearly 28% of the currently accepted species display deeply diverged mitochondrial intraspecific lineages (Dincă et al., 2015), some of which are concentrated in particular geographical regions (Dappporto et al., 2017; Scalercio et al., 2020). These taxa should be analysed in detail to ascertain the existence of potential cryptic species. In fact, new cryptic butterfly species have recently been documented in Europe (Dincă et al., 2011a, b; Žinetti et al., 2013; Hernández-Roldán et al., 2016; Schmitt et al., 2016; Verovnik & Wiemers, 2016; Lukhtanov & Dantchenko, 2017). Nevertheless, numerous taxa showing highly diverging lineages remain largely unexplored, hampering a thorough evaluation of the incidence of cryptic biodiversity in Lepidoptera.

The genus Muschampia Tutt, 1906 or Sloperia Tutt, 1906 (the validity of the denomination is still under debate; Wiemers et al., 2018) comprised, in its former taxonomy, ~20 species distributed across the Palaearctic region, with most diversity occurring in the Middle East and Central Asia (Tuzov, 1997; García-Barros et al., 2013). Recently, the genus has been revised and rearranged based on genomic analyses (Zhang et al., 2020). It has been shown that Muschampia is not monophyletic, as traditionally accepted. To re-establish monophyly, Muschampia cribrellum (Eversmann, 1841) has been excluded from the genus (now Favria cribrellum), and several species previously considered as members of the genus Carcharodus Hübnner [1819] have been included in the genus Muschampia (Zhang et al., 2020).

Muschampia proto (Ochsenheimer, 1808) is the type species of the genus. It was believed to range from the Mediterranean (northern Africa, Iberian Peninsula, southern France, southern Italy, southern Balkan Peninsula, Anatolia, Lebanon and Israel) to areas surrounding the Caucasus. Its distribution is fragmented across the range, which led to the description of several subspecific taxa (Tshikolovets, 2011). The eastern taxon Muschampia proteides (Wagner, 1829), originally described as a subspecies of M. proto, is frequently treated as a different species (e.g. Tshikolovets, 2011; Kemal & Koçak, 2017) but, depending on the author, a set of subspecies are placed either in M. proto or in M. proteides (e.g. M. p. sovietica Sichel, 1964; M. p. hieromax Hemming, 1932). These taxonomic decisions have never been verified by pairing genetic data with detailed morphological analyses, such as geometric morphometrics. Given these uncertainties, the taxa related to M. proto and M. proteides were grouped under the denomination ‘M. proto complex’.

The so-called integrative approach (the analysis of presumably independent characters of different types) can provide better support for species delimitation compared with traditional morphological approaches or single-marker surveys (Lumley & Sperling, 2010; Dincă et al., 2011a, b; Platania et al., 2020). Accordingly, the main criterion used for species recognition in the most recent list of European butterflies (Wiemers et al., 2018) was differentiation in two character sets (e.g. mitochondrial DNA, nuclear DNA, morphology or karyology). In this context, we studied the genetic structure of the M. proto complex using mitochondrial (cytochrome c oxidase I, COI) and nuclear (internal transcribed spacer 2, ITS2) markers, and we examined the morphology of male genitalia by applying geometric morphometrics. Our aims were to provide a better understanding of phylogeographical patterns and to refine the taxonomic status of this complex.

MATERIAL AND METHODS

SAMPLING, DNA EXTRACTION AND SEQUENCING

A total of 147 samples were used for the DNA analysis and/or measurement of the genitalia (Supporting Information, Table S1; Fig. 1). The phylogenetic analyses were conducted for 122 individuals, from which we retrieved 121 COI and 53 ITS2 sequences. A subset of the COI sequences was generated at the Biodiversity Institute of Ontario (Guelph, ON, Canada) following standard protocols for DNA barcoding (deWaa and et al., 2008), and DNA sequencing was performed on an ABI 3730XL capillary sequencer (Applied Biosystems). The rest of the COI sequences and all ITS2 sequences generated for this study were obtained at the Butterfly Diversity and Evolution Lab of the Institut de Biologia Evolutiva (CSIC-UPF; Barcelona, Spain). In this case, total genomic DNA was extracted using Chelex 100 resin, 100–200 mesh, sodium form (BioRad), using the following protocol: one leg was removed and introduced into 100 μL of 10% Chelex to which 5 μL of Proteinase K (20 mg/mL) was added. The samples were incubated overnight at 55 °C in a shaker and subsequently incubated at 100 °C for 15 min.

LepF1 and LepR1 primers (Hebert et al., 2004; 5′-ATT CAACCAATCATAAAGATATTGG-3′ and 5′-AAACT TCTGGATGTCCAAAATC-3′, respectively) were used for the amplification of the standard barcode fragment of COI. Double-stranded DNA was amplified in 25 μL reactions: 13.2 μL ultra-pure (HPLC quality) water, 5 μL of 5x Green GoTaq Flexi Buffer (Promega), 3.2 μL of 25 mM MgCl2, 0.5 μL of 10 mM dNTP, 0.5 μL of each primer (10 μM), 0.1 μL of GoTaq G2 Flexi Polymerase (Promega) and 2 μL of extracted DNA. The reaction conditions comprised a first denaturation at 92 °C for 60 s, followed by five cycles of 92 °C for 15 s, 48 °C for 45 s and 62 °C for 150 s, another 30 cycles with the annealing temperature changed to 52 °C, and a final extension step at 62 °C for 7 min.
ITS2 was amplified with MS-2F and MS-2R primers (5′-GGACACATTGAAACATCGACA-3′ and 5′-TGATCTGAGCGCAACGATAAA-3′, respectively), which we developed specifically for Muschampia. Double-stranded DNA was amplified in 25 μL reactions: 14.4 μL ultra-pure (HPLC quality) water, 5 μL of 5× Green GoTaq Flexi Buffer (Promega), 2 μL of 25 mM MgCl₂, 0.5 μL of 10 mM dNTP, 0.5 μL of each primer (10 mM), 0.1 μL of GoTaq G2 Flexi Polymerase (Promega) and 2 μL of extracted DNA. The reaction conditions comprised a first denaturation at 94 °C for 3 min, 36 cycles of 94 °C for 35 s, 48 °C for 30 s and 72 °C for 60 s, and a final extension step at 72 °C for 6 min. Polymerase chain reaction products were purified and Sanger sequenced by Macrogen Inc. Europe (Amsterdam, The Netherlands). All sequences are deposited in BOLD and GenBank (Supporting Information, Table S1). The mitochondrial COI sequence of the Muschampia mohammed caid (Le Cerf, 1923) holotype specimen was obtained from a previously published study (Zhang et al., 2020).

Phylogenetic reconstruction

Sequences belonging to each marker were aligned with GENEIOUS v.11.0.5 (Kearse et al., 2012) with the Geneious Alignment method. According to JMODELTEST v.2.1.7 (Darriba et al., 2012) and under the Akaike information criterion, the best-fitting substitution model was GTR+G. A Bayesian inference phylogeny was constructed for each marker (Fig. 2A, B) with BEAST v.2.5.0 (Bouckaert et al., 2014). The COI phylogeny was also used to obtain rough estimates of node ages, taking into account two molecular clocks: 1.5% uncorrected pairwise distance per million years, estimated for various invertebrates (Quek et al., 2004), and 2.3%, estimated for the entire mitochondrial genome of several arthropods (Brower, 1994). A strict clock and a normal prior distribution were used, the latter centred on the mean between the two substitution rates, and the standard deviation was tuned so that the 95% confidence interval of the posterior density coincided with the 1.5 and 2.3% rates. For both markers, parameters were estimated using two independent runs of 30 million generations each (then merged), and convergence was checked with TRACER v.1.7.1 (Rambaut, 2018). Two maximum likelihood (ML) inferences were obtained, one for each gene, with RAxML v.8.2.12 (Stamatakis, 2014) in CIPRES (Miller et al., 2015). The ML + thorough bootstrap workflow was selected, with a GTR+GAMMA model and 1000 bootstrap replicates. Uncorrected p-distances (minimum interspecific and maximum intraspecific) were calculated with SPECIES IDENTIFIER v.1.8 (Meier et al., 2006).

Morphometrics of male genitalia

Genitalia of 45 males were examined, representative for populations ranging from Iberia to southern Russia and Iran (Supporting Information, Table S1). They were prepared according to the following...
A combination of landmarks and sliding semilandmarks (Bookstein, 1997) was applied to the outlines of the cucullus (four landmarks and 20 semilandmarks) and gnathos (three landmarks and seven semilandmarks). We considered as landmarks points that could be identified precisely, whereas the semilandmarks were allowed to slide along the outline trajectory (Fig. 3A). In butterflies, the cucullus and the gnathos are sometimes highly variable among closely related species. Diverse shapes in these structures characterize different species of Hesperiidae, and European and north African species of the genus Muschampia typically experience interspecific variation in these structures (Higgins, 1975).

Landmarks were digitized with the program TPSDIG v.2.32 (Rohlf, 2018). In order to remove non-shape variation and to superimpose the objects in a common coordinate system, a generalized Procrustes analysis was applied to the landmark data (Adams et al., 2004). Partial warps were calculated using the shape residuals from the generalized Procrustes analysis. By applying principal components analyses to partial warps, relative warps (RWs; principal components, PCs) were obtained and used as variables in subsequent analyses (Bookstein, 1997). Centroid size, the square root of the sum of squared distances of all the landmarks, has also been calculated as the most appropriate measure for overall size (Bookstein, 1997).

We tested the existence of a signature of diversification in genitalia among the main clades highlighted by molecular markers by using partial least squares discriminant analysis (PLSDA). A series of PLSDAs were carried out by using shape variables (PCs) and the hypothesis for species attribution as the grouping variable. Given that relative warps can be particularly numerous (2× number of landmarks minus four), overfitting had to be avoided. We thus applied a sparse PLSDA (Lê Cao et al., 2011) by including five shape variables in each component. Finally, to evaluate the degree of diversification as a percentage of cases that can be attributed blindly to their group, we applied a jackknife (leave-one-out) algorithm and classified each specimen individually (e.g. Platania et al., 2020). These analyses were carried out with the ‘splsda’ and ‘predict’ functions in the mixOmics R package (Rohart et al., 2017). We compared the centroid size among putative species by using a Kruskal–Wallis test, paired with post hoc tests if cases of an overall significant effect were found.

Comparison of spatial distribution of diversity between markers

The p-distance dissimilarity matrices for COI and ITS2 were projected in two dimensions by principal coordinates analysis using the ‘cmdscale’ R function. A two-dimensional representation of the variation in male genitalia was obtained by PLSDA as described above. To facilitate a direct comparison of the patterns of different markers, we eliminated the effect of location and rotation among bidimensional representations with Procrustes analyses, using the COI configuration as a reference. Given that different markers were represented by different sets of specimens, we used the ‘recluster.procrustes’ function of the recluster R package (Dapporto et al., 2013), which maximizes similarities among configurations on the basis of partly overlapping data sets (Dapporto et al., 2014). After Procrustes analysis, the aligned bidimensional configurations for specimens were projected in the red–green–blue colour space using the same package. Specimens were grouped when belonging to the same square of 2° × 2° of latitude and longitude, and their individual red–green–blue colours were plotted on a map using pie charts.

Species delimitation

To investigate species limits, we used the software BPP v.4.2.9 (Flouri et al., 2018), running the analysis type ‘A10’ (Yang & Rannala, 2010; Rannala & Yang, 2013), which implements a reversible-jump Markov chain Monte Carlo (MCMC) species delimitation algorithm. Here, we used only those individuals that had both markers available, which we assigned to species according to Figure 2A. Given that the markers are nuclear and mitochondrial, flags ‘heredity’ and ‘locusrate’ were activated. For θ and τ, we explored three scenarios (Leaché & Fujita, 2010): (1) assuming relatively large ancestral population sizes and deep divergences, θ ~ IG(3, 0.002) and τ ~ IG(3, 0.2), both with a prior mean = 0.1 and variance = 0.01; (2) assuming relatively small ancestral population sizes and shallow divergences among species, θ ~ IG(3, 0.002) and τ0 ~ IG(3, 0.002), both with a prior mean = 0.001 and variance = 10⁻⁶; and (3) assuming large ancestral populations sizes, θ ~ IG(3, 0.002), and relatively shallow diversifications among species, τ0 ~ IG(3, 0.002). We ran analyses for 5 × 10⁵ MCMC generations, with a burn-in of 5 × 10⁴ generations and sampling every five generations. For each scenario, we ran BPP twice to check that our results were consistent across runs.
We implemented the Bayesian Poisson tree processes (bPTP) model (Zhang et al., 2013) independently for the ITS2 and COI markers and using the BEAST phylogeny as input. We selected 500 000 MCMC generations, a thinning value of 100 and a burn-in of 10%.

RESULTS

NUCLEAR DNA

The Bayesian and ML phylogenies based on ITS2 sequences retrieved three clades (Fig. 2A; Supporting Information, Fig. S1) that we defined as three distinct species: (1) M. proto, including all Ibero-African and French individuals [posterior probabilities (PP) = 1; bootstrap = 91]; (2) Muschampia alta (Schwingenschuß, 1942) comb. & stat. nov., consisting of samples from southern Italy and the Balkan Peninsula (PP = 1; bootstrap = 99); and (3) M. proteides, encompassing all the populations occurring east of the Balkan Peninsula (PP = 1; bootstrap = 77). We recovered M. alta and M. proteides as sister taxa, although the support was low (PP and bootstrap < 0.7/70). In the Bayesian phylogeny, M. proteides was divided into two divergent clades (PP = 0.99 and PP = 1), one exclusive to the Talysh Mountains (Azerbaijan). We did not detect notable intraspecific structure in the other species. Minimum uncorrected pairwise distances between these species were 2.55% between M. proto and M. alta, 2.53% between M. proto and M. proteides and 2.87% between M. alta and M. proteides. Maximum uncorrected pairwise distances within species were 0.4% in M. proto, 0.59% in M. alta and 2.22% in M. proteides.

MITOCHONDRIAL DNA

The Bayesian and ML phylogenies based on COI sequences recovered the M. proto complex as monophyletic (PP = 0.78, bootstrap = 82). The complex diverged from Muschampia mohammed (Oberthür, 1887) (the sibling species according to Zhang et al., 2020) ~2.3 (95% highest posterior density range = 1.5–3.2)

Figure 2. A, phylogenetic tree based on ITS2 data obtained through Bayesian inference. Posterior probabilities > 0.7 are indicated. Scale units are presented in substitutions per site. For each sample, boxes are filled if the genitalia were measured and/or the COI gene was sequenced. B, COI gene tree obtained through Bayesian inference, with the main groups collapsed. The x-axis indicates time (in millions of years), and the blue bars show the 95% highest posterior density range for the posterior distribution of node ages.

Mya. *Muschampia proto* and *M. alta* were monophyletic and supported, but *M. proteides* was recovered as paraphyletic, although this was not supported (Fig. 2B; Supporting Information, Figs S2, S3). The Bayesian phylogeny highlighted five clades. Among these, lineage 1 (PP = 1; bootstrap = 93), including populations from southern France, Iberia and northern Africa (*M. proto*), was sister to the rest (in agreement with the ITS2 phylogeny), with an estimated age of ~2 (1.3–2.8) Mya. In lineage 1, the Algerian individual displayed a notable divergence (Supporting Information, Figs S2, S3) and a minimum uncorrected pairwise distance of 2.1% compared with the remaining individuals within this clade. The other African specimens, from Morocco, grouped with the European ones in the clade. Lineage 2 (PP = 1; polyphyletic in the ML phylogeny) originated ~1.6 (1.0–2.2) Mya and lineage 3 (PP = 1; bootstrap = 99) ~1.4 (1.0–2.0) Mya. Finally, lineage 4 (PP = 1; bootstrap = 98) and lineage 5 (PP = 1, bootstrap = 94), treated as *M. alta*, split ~1.2 (0.7–1.8) Mya. According to the subset of specimens with ITS2 data available, clades 2, 3 and 4 were attributable to *M. proteides*. In the COI tree, the *M. proteides* specimens from the Talysh Mountains (Azerbaijan), which were differentiated based on the nuclear marker (Fig. 2A), formed a recently emerged group inside *M. proteides* lineage 3 (Fig. 2B; Supporting Information, Fig. S2). In *M. alta*, Italian individuals formed a clade (PP = 0.7; bootstrap < 70).

Minimum interspecific genetic distances were 3.79% between *M. proto* and *M. alta*, 2.96% between *M. proto* and *M. proteides* and 2.08% between *M. alta* and *M. proteides*. Maximum uncorrected pairwise distances within species were 2.5% in *M. proto*, 0.93% in *M. alta* and 4.02% in *M. proteides*.

Genitalia

Among the 44 relative warps extracted for the cucullus and 16 relative warps obtained for the gnathos, only four showed absolute values of loading > 0.3 in the PLSDA (cucullus RW1 and RW2; gnathos RW1 and RW3). Being among the first RWs extracted for each process, these variables explained most of the variation in shape of their processes (56.32% for cucullus and 58.47% for gnathos), indicating that most of the variability in shape among specimens was related to differences among the proposed species. Accordingly, a PLSDA plot clearly separated the three groups of specimens (Fig. 3B) that corresponded to *M. proto* (12 genitalia), *M. alta* (16) and *M. proteides* (17). When blindly attributed in a jackknife procedure, 97.2% of samples were correctly classified and only one was misclassified. The centroid size of genitalia did not differ among the three taxa (Kruskal–Wallis $\chi^2 = 3.788$, d.f. = 2, P-value = 0.151).

The analysis of thin plate splines allowed inspection of the differences in landmark configurations among average values of the four RWs for the different species. According to the PLSDA results (Fig. 3B), *M. proto* mostly differed from the other two species by the shape of the cucullus, which had a larger dorsal process (Fig. 3C). At the opposite extreme, *M. alta* showed the most reduced process. The gnathos was much shorter in *M. proteides* than in the other two species (Fig. 3C). A representative picture of the genitalia of each species is shown in the Supporting Information (Fig. S4).

Comparison of spatial distribution among markers

A comparison of the spatial distribution of differentiation among markers (Fig. 4A–F) showed a virtually perfect concordance with the three species proposed. The only discrepancy in nuclear and mitochondrial DNA markers was attributable to *M. proteides* samples belonging to mitochondrial lineages 2 and 4 (Fig. 4A–D).

Species delimitation

BPP using both loci separated the complex into the three suggested species with a PP = 1 in the three scenarios studied. Using the ITS2 marker, bPTP recovered the three species in both ML and Bayesian solutions with supports of 0.94 for *M. alta*, 0.88 for *M. proto* and 0.72 for *M. proteides*. In contrast, using the COI barcode fragment, bPTP suggested 22 species in the ML solution and 45 in the Bayesian solution; none corresponded to our proposal.

Taxonomy of the Muschampia Proto Complex

Muschampia proto (Ochsenheimer, 1808)

Type locality: Portugal.

Original name: *Papilio proto*.

Monophyletic in the phylogenies based on nuclear and mitochondrial markers. Minimum uncorrected p-distances are 2.55% (ITS2) and 3.79% (COI) with respect to *M. alta* and 2.53% (ITS2) and 2.96% (COI) with respect to *M. proteides*. Morphometric analyses of the genitalia separate *M. proto* from the other species well. It can be distinguished from *M. proteides*...
by the long gnathos, sometimes with the tip rounded. Compared with *M. alta* and *M. proteides*, it has a wider dorsal process of the cucullus. No diagnostic traits in the wings to distinguish it from *M. alta* and *M. proteides* were observed, although no morphometric analyses were performed.

Figure 3. Geometric morphometrics of male genitalia. A, the location of fixed landmarks (filled circles) and sliding semilandmarks (open circles) on the cucullus (red) and gnathos (green). B, the partial least squares discriminant analysis (PLSDA) results, showing specimens of the three species as dots of different colours and the relative warp (RW) scores as dotted lines (Cuc, cucullus; Gn, gnathos). C, thin plate splines representing deformations corresponding to the average values shown by the three species in the relative warps selected by PLSDA as those most involved in the discrimination of the groups.
Distribution: North-western Africa, the Iberian Peninsula and the Mediterranean coast of France.

MuschaMPia alta (Schwingenschüss, 1942) **Comb. & Stat. Nov.**

Type locality: Taormina, Sicily, Italy.

Original name: Hesperia proto alta.

Monophyletic in the phylogenies based on nuclear and mitochondrial markers, which show that this taxon is sister to *M. proteides*. Minimum uncorrected *p*-distances are 2.55% (ITS2) and 3.79% (*COI*) with respect to *M. proto* and 2.87% (ITS2) and 2.08% (*COI*) with respect to *M. proteides*. It can be distinguished...
from *M. proteides* by the long gnathos. Morphometrics of the male genitalia highlights differences in the cucullus with respect to *M. proto* and *M. proteides*, in particular a smaller dorsal process of the cucullus. No diagnostic traits in the wings to distinguish it from *M. proto* and *M. proteides* were observed, although no morphometric analyses were performed.

Distribution: Sicily, southern Italian Peninsula and Balkan Peninsula. It is probable that the species is also present in the western Aegean Islands.

Muschampia proteides (Wagner, 1929)

Type locality: Akşehir, Turkey.

Original name: Hesperia proto proteides.

Nuclear and mitochondrial markers displayed differences with respect to *M. proto* and *M. alta*. We recover it as monophyletic in the phylogeny based on ITS2. However, it is paraphyletic with respect to *M. alta* in the COI phylogeny. Minimum uncorrected *p*-distances are 2.87% (ITS2) and 2.08% (COI) with respect to *M. alta* and 2.53% (ITS2) and 2.96% (COI) with respect to *M. proto*. The gnathos of the male genitalia is typically wide and short, a character useful to differentiate it from *M. proto* and *M. alta*. No diagnostic traits in the wings to distinguish it from *M. proto* and *M. alta* were observed, although no morphometric analyses were performed.

Distribution: From eastern Europe (Ukraine, southwestern Russia), Anatolia and Israel to the northeastern coast of the Caspian Sea and Iran. Its distribution further east is unclear. We confirm its presence in the Greek islands of Symi and Tilos, which suggests that it is the only species of the triplet found in the eastern Aegean Islands.

DISCUSSION

The Muschampia proto complex, a triplet of cryptic species

The results of the nuclear DNA phylogeny (Figs 2A, 4A, B), morphometrics of the male genitalia (Figs 3, 4E, F) and species delimitation analyses (BPP for both loci together and bPTP for ITS2 alone) support the division of the *M. proto* complex into three species with the following geographical distributions (Fig. 1): (1) *M. proto*, present in north Africa, the Iberian Peninsula and southern France; (2) *M. alta*, present in southern Italy and the Balkan Peninsula; and (3) *M. proteides*, distributed east of the Balkan Peninsula. This taxonomic arrangement adds two new species to the European butterfly fauna, which now reaches 498 species (Wiemers et al., 2018). The species proposed can be differentiated based on any of the three traits analysed here, and their characteristics are explained in the ‘Taxonomy of the Muschampia proto complex’ section above.

The division into three species is clear in the ITS2 phylogeny (Fig. 2A), where we recover each of them as monophyletic with a PP = 1 and bootstrap = 0.77–0.99. Minimum uncorrected *p*-distances between them range from 2.53 to 2.87%, which in this marker can be regarded as usual values for interspecific divergences for Lepidoptera (e.g. Wiemers et al., 2010; Vasudev, 2013). However, in the COI phylogeny *M. proteides* is paraphyletic with respect to *M. alta*, although this pattern is not well supported in any analysis. *Muschampia proteides* and *M. alta* also have the lowest minimum distance for COI (2.08%) compared with those found between *M. proteides* and *M. proto* (2.96%) and between *M. alta* and *M. proto* (3.79%). Although this divergence is not very high, similar or lower values are sometimes found between butterfly species (Ashfaq et al., 2013; Dincă et al. 2013; Huemer et al., 2014), and species that share the same barcode sequences are not exceptional (Dincă et al., 2015).

The phylogeny inferred from COI (Fig. 2B; Supporting Information, Figs S2, S3) displays lineages that are absent in the ITS2 tree (Fig. 2A). This is not uncommon and might be the result of the higher mutation rate of mitochondrial DNA (Alio et al., 2017) and/or of processes of isolation followed by panmixia (Hinojosa et al., 2019; Pazhenkova & Lukhtanov, 2019). For example, in *M. alta* the mitochondrial gene slightly separates the Balkan specimens from the Italian ones in two clades (with a PP < 0.7 for the Balkan and PP = 0.7 for the Italian; both bootstrap values are < 70), a division that is not reflected in the nuclear marker. These results would point to a case of incomplete lineage sorting in the nuclear marker. In *M. proto*, a sample from Algeria has a considerable minimum distance of 2.1% in the barcode compared with the rest, but it maintains an almost identical ITS2 sequence to the other conspecifics. COI haplotypes are shared between Moroccan and Iberian specimens, which indicates that gene flow between Iberia and Africa occurred recently. *Muschampia proteides* is divided into two clades in the ITS2 phylogeny, but forms three clades in the COI phylogeny; in fact, it is the most variable species in both markers, with a maximum intraspecific distance that reaches 2.22%
in the ITS2 and 4.02% in the COI. One of the ITS2 lineages is formed exclusively by specimens from the Talysh Mountains (Azerbaijan), whereas the other Azerbaijani individual present in the ITS2 phylogeny, from the Lesser Caucasus, is grouped with the rest of *M. proteides*. This lineage does not correspond to any of the three main mitochondrial lineages and is retrieved as a relatively recent split inside mitochondrial lineage 2 (Supporting Information, Figs S2, S3). The analysis of male genitalia does not place them as outliers of *M. proteides*, and no distinctive wing patterns have been observed; therefore, we consider the population from the Talysh Mountains as *M. proteides*.

We hypothesize that alternate processes of isolation and panmixia generated the observed genetic pattern. The existence of three entities is reinforced by the measurements of male genitalia. They clearly distinguish three groups that exhibit notable differences (Figs 3, 4E, F). All but one of the specimens (45 out of 46) were correctly classified when blindly attributed in a jackknife procedure. More precisely, species can be distinguished by the relative dimension of the dorsal process of the cucullus compared with the tip of the valva (for details, see the section 'Taxonomy of the Muschampia proteides complex'). *Muschampia proteides* displays the most obvious differences in genitalia because of its short and wide gnathos, a distinctive trait also demonstrated by Kemal & Koçak (2017).

Before the present study, the distribution of *M. proteides* was considered by some authors to be restricted to Anatolia, Transcaucasia, the Near East and Iran, whereas populations occurring in the northern part of the Black and Caspian Seas were considered to belong to *M. proto* (Tshikolovets, 2011). We demonstrate here that there are no distinctive traits between these populations and that they all belong to *M. proteides*. Additionally, *M. proto* and *M. proteides* have been cited in sympatry in Anatolia and the Levant (Hesselbarth et al., 1995; Benyamini, 2010; Tshikolovets, 2011). Hesselbarth et al. (1995) even reported differences in wing pattern and coloration to distinguish both species in sympatry. We analysed individuals from this region corresponding to the two forms (Supporting Information, Fig. S5) described by Hesselbarth et al. (1995) and we did not find differences in the molecular markers (all were *M. proteides* belonging to COI lineage 2 apart from one belonging to lineage 3). Thus, neither *M. proto* nor *M. alta* seems to be present in Anatolia, where apparently only *M. proteides* occurs.

Phylogeographical History of the Complex

The hypothetical phylogeographical history of the complex that can be reconstructed based on the molecular evidence, with main events dated according to the mitochondrial chronogram (Fig. 2B; Supporting Information, Figs S2, S3), includes the following main steps:

1. Approximately 2.3 (1.5–3.2) Mya, the ancestor of the *M. proto* complex and *M. mohammed* split, with the former probably remaining in Europe and Asia and the latter in northern Africa.

2. Approximately 2.0 (1.3–2.8) Mya, *M. alta* populations separated from the eastern ones. A division within this clade occurred ~1.3 (0.7–1.9) Mya, when African and Iberian populations split, probably as a result of the colonization of Africa. Gene flow from Iberia to Morocco took place again recently.

3. The eastern lineage (nowadays *M. proteides* and *M. alta*) possibly experienced periods of fragmentation and isolation that drove mitochondrial differentiation, but it would appear that populations subsequently admixed. Isolation events happened ~1.6 (1.0–2.2) Mya, generating lineage 2, and ~1.4 (1.0–2.0) Mya, resulting in lineage 3.

4. At the latest 1.2 (0.7–1.8) Mya, *M. alta* and *M. proteides* split. We did not find evidence of posterior gene flow between them, although nowadays they are geographically close in the Aegean Islands. More recently, ~0.5 (0.3–0.8) Mya, the Italian and Balkan populations of *M. alta* diverged.

Conclusions

We conclude that *M. proto s.l.* is a complex of three cryptic species that diverged between ~2.0 and 1.2 Mya: *M. proto*, present in north Africa, the Iberian Peninsula and southern France; *M. alta*, found in southern Italy and the Balkan Peninsula; and *M. proteides*, which is distributed east of the Balkan Peninsula. All three are well differentiated and monophyletic in both mitochondrial and nuclear phylogenies except for *M. proteides*, which, although diverged, is paraphyletic with low support with respect to *M. alta* in the COI tree. Most species delimitation analyses performed support the three species hypothesis. Morphometrics of the male genitalia reveals that *M. proteides* has a shorter and wider gnathos compared with *M. alta* and *M. proto*, and all species show a different relative dimension of the dorsal process of cucullus compared with the tip of the valva. This research adds two new species to the European butterfly fauna and shows that hidden diversity still awaits discovery even in taxa and regions that are generally well known.

Acknowledgements

We are grateful to all the colleagues who provided samples used in this study. Financial support for
this research was provided by projects PID2019-107078GB-100 / Agencia Estatal de Investigación / 10.13039/501100011033 and 2017-SGR-991 (Generalitat de Catalunya) to R.V., by a predoctoral fellowship BES-2017-080641 (Ministerio de Economía y Empresa de España) to J.C.H., by the Academy of Finland (decision no. 328895) to V.D. and by project RSF 19-14-00202 (from the Russian Science Foundation to the Zoological Institute of the Russian Academy of Sciences) to V.A.L., and by the project Servizio di attuazione delle azioni per la protezione degli impollinatori e diffusione dell’entomofauna del Parco Nazionale dell’Alta Murgia to L.D.

REFERENCES

 Wiemers M, Balletto E, Dincă V, Fric ZF, Lamas G, Lukhtanov V, Munguira ML, Van Swaay CAM, Vila R,
Cryptic Diversity in Muschampia

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Figure S1. ITS2 gene tree obtained through maximum likelihood inference. Bootstrap values > 70 are indicated.

Figure S2. COI gene tree obtained through Bayesian inference. Posterior probabilities > 0.7 are indicated. The x-axis indicates time (in millions of years before present), and the blue bars show the 95% highest posterior density range for the age posterior distribution of nodes older than 500 000 years.

Figure S3. COI gene tree obtained through maximum likelihood inference. Bootstrap values > 70 are indicated.

Figure S4. Comparison of male genitalia of the three species displaying the typical forms. In Muschampia proto, the tip of the gnathos is also commonly pointed.

Figure S5. Selection of four Muschampia proteides individuals from Anatolia used in this study. Following the morphological criteria of Hesselbarth et al. (1995), the first two (RVcoll08P581 and RVcoll08P597) would correspond to the form classified as ‘M. proteides’ and the other two (RVcoll08P568 and RVcoll08P599) to ‘M. proto’.

Table S1. Specimens used in this study and GenBank accession numbers.