Molecular cloning and structural analysis of 3-hydroxy-3-methylglutaryl coenzyme A reductase of the moth

Agrotis ipsilon

L. Duportets,1,2 X. Belles,3 F. Rossignol1† and F. Couillaud3
1Laboratoire de Neuroendocrinologie, Université Bordeaux I, Talence, France; 2Department of Physiology and Molecular Biodiversity, Institut de Biologia Molecular de Barcelona (CID CSIC), Barcelona, Spain, and 3Institut François Magendie, Laboratoire de Neurobiologie fonctionnelle, Unité INSERM 378, Bordeaux, France

Abstract

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which plays a key role in isoprenoid biosynthesis, catalyses the synthesis of mevalonate from HMG-CoA. Insects do not synthesize cholesterol de novo, rather mevalonate derivatives lead to non-sterol isoprenoids which are essential for development and reproduction. In this paper, we describe an HMG-CoA reductase of the moth Agrotis ipsilon and we report its expression in fat body, ovary, muscle, brain and corpora allata tissues of adult specimens. The analysis of the cDNA reveals that it encodes a polypeptide of 833 amino acids (Mr = 89785). Alignments of this HMG-CoA reductase from A. ipsilon with the homologous sequences of other eukaryotes shows a high degree of conservation in all species studied. Parsimony analysis based on these alignments produced dendrograms congruent with the current systematic schemes. This suggests that, during eukaryote evolution, HMG-CoA reductase diversified in parallel with taxonomic splitting.

Keywords: insect, isoprenoid, juvenile hormone, molecular phylogeny, Agrotis ipsilon, 3-hydroxy-3-methylglutaryl coenzyme A reductase, HMG-CoA reductase.

Introduction

3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) (EC 1.1.1.34) is a key enzyme in isoprenoid biosynthesis, catalysing the transformation of HMG-CoA to mevalonate, the common precursor for several classes of essential metabolites, including dolichols, ubiquinones, protein prenyl moieties, and sterols in many organisms (Brown & Goldstein, 1980; Goldstein & Brown, 1990). Due to its central role, HMG-CoA reductase has been extensively studied in mammals, plants and prokaryotes, but surprisingly to a lower rate in invertebrates including insects. In insects, however, the studies of the isoprenoids pathway is important since it plays an important role in physiology and it represents a unique model system for several reasons.

Insects cannot synthesize cholesterol de novo as they lack the two enzymes required beyond farnesyl pyrophosphate formation, namely squalene synthase and lanosterol synthase (Clayton, 1964). In mammals, HMG-CoA reductase has been shown to be precisely downregulated by cholesterol, at the level of both enzyme activity and gene expression (Rosser et al., 1989; Wilkin et al., 1990). Such a mechanism is unlikely to exist in insects as they obtain cholesterol from dietary sterols, and hence HMG-CoA reductase only participates in the synthesis of linear sesquiterpenes. Furthermore, there does not seem to be any regulation by sterols from exogenous origin (Brown et al., 1983).

In insects, mevalonate is the precursor for juvenile hormones (JH), specific non-sterol sesquiterpene derivatives playing important roles in development and reproduction (Schooley & Baker, 1985). JH biosynthesis occurs in the corpora allata (CA), a small pair of retrocerebral endocrine glands. The brain regulates CA activity via stimulatory and inhibitory neuropeptides that act, at least in part, on
Results and discussion

Study of its expression in a number of adult tissues, namely the fat body, the ovary, the muscles, the brain and the CA.

To clone HMG-CoA reductase cDNA from a cDNA library of the fruit fly Drosophila melanogaster (Gentet et al., 1988) and in the German cockroach Blattella germanica (Martinez-Gonzalez et al., 1993), although the small size of the CA did not permit detection of the messenger RNA (mRNA) corresponding to these enzymes in the CA using Northern blot techniques. In addition to structural information, the comparison of insect HMG-CoA reductase sequences revealed some interesting features, like the relative isolation of that from B. germanica with respect to other sequences (Martinez-Gonzalez et al., 1993). In this context, cloning an HMG-CoA reductase from a lepidopteran species would be interesting also because CA from Lepidoptera produce a variety of additional JH homologues resulting from the synthesis of homomevalonate instead of mevalonate catalysed by HMG-CoA reductase (Schooley & Baker, 1985).

These reasons led us to isolate and characterize a cDNA encoding a lepidopteran HMG-CoA reductase. In this paper, we present the cloning of a full-length cDNA of a putative HMG-CoA reductase isolated from a cDNA library of Agrotis ipsilon brain/suboesophageal ganglion complex, and the study of its expression in a number of adult tissues, namely the fat body, the ovary, the muscles, the brain and the CA. Finally, a comparative analysis with HMG-CoA reductase sequences of other species is also reported.

Results and discussion

Isolation of HMG-CoA reductase cDNA from Agrotis ipsilon library

To clone HMG-CoA reductase cDNA from A. ipsilon, we postulated that the moth enzyme would contain highly conserved regions in the catalytic domain. We thus used degenerate primers previously designed to isolate HMG-CoA reductase cDNA from the cockroach B. germanica (Martinez-Gonzalez et al., 1993). Total RNA from brain–suboesophageal ganglion complexes of adult moth was used as template for reverse transcription polymerase chain reaction (RT-PCR). This strategy generated two PCR products with only one having the expected size for HMG-CoA reductase. Purification, reamplification, cloning and sequencing provided a nucleotide sequence from which the deduced amino acid sequence showed a high similarity with other HMG-CoA reductases. We postulated that this PCR product corresponded to part of the cDNA sequence of A. ipsilon HMG-CoA reductase.

Isolation of the full-length cDNA corresponding to the probe was performed by PCR screening of the cDNA library. Two primers (H1/H2) were designed on the basis of the probe sequence. Primers H1/H2 yielded a strong and specific amplification of a 183 bp fragment using a single rapid PCR method. The H1/H2 PCR was used to screen the cDNA library up to isolation of a single clone. One positive clone lambda/A(HMGMR-4) containing an insert of about 3820 bp was selected, and the corresponding phagemid (pAIHMG-4) was excised and sequenced. The nucleotide sequence, starting at the most 5' ATG triplet, reveals an open reading frame of 2499 bp and encodes for a polypeptide of 833 amino acid residues (M, = 89785 Da). It is flanked by untranslated regions 5' and 3' which are 222 and 1108 bp in length, respectively. The nucleotide sequence of this cDNA, and the deduced amino acid sequence, are shown in Fig. 1. A region containing the polyadenylation site was found at position 3793–3799 located 16 bp upstream of the poly(A) tail.

Expression of HMG-CoA reductase mRNA in different tissues

Expression of HMG-CoA reductase mRNA was assayed on different adult tissues. The RT-PCR procedure was chosen because Northern blot analysis is not sensitive enough to detect mRNA for an enzyme of the JH pathway in the CA (Castillo & Couillaud, 1999). Using two specific primers H3/H4 external to H1/H2 primers and surrounding the catalytic domain of HMG-CoA reductase, a PCR product of 236 bp was detected in all the tissues assayed, namely fat body, ovary, muscle, brain and CA from adult moths (Fig. 2). The 236 bp PCR product was used as template for a nested PCR using H1/H2 primers, and again a 236 bp product was detected in all the studied tissues (not shown), which affords additional arguments for the specificity of the amplification. Given that the analysis of PCR fragments was carried out after either thirty-five or forty cycles,
a plateau phase was probably reached, thus leading to equivalent ethidium bromide fluorescence, and making quantification irrelevant. However, it is worth pointing out that starting material used for each sample corresponds to a range of 1 to 10 mg of fresh tissues for fat body, ovary muscle and brain, but about 100 times less for male CA (two pairs, 10 mg) and 500 times less for female CA (two pairs, 2 mg). Furthermore, it is also worth noting that the PCR products cannot result from amplification of contaminant genomic DNA because if reverse transcription is omitted, then amplification does not occur (results of control experiments not shown).

Analysis of the amino acid sequence

The hydrophobicity plot of the protein deduced from the cDNA (Fig. 3) reveals the classical organization of an animal-type HMG-CoA reductase, with an N-terminal region containing the potential membrane-spanning domains, followed by a short hydrophilic linker which connects with the C-terminal region containing the catalytic domain. Eight potential membrane-spanning domains can be recognized in the hydrophobicity plot (Fig. 3), based on the algorithm of Kyte & Doolittle (1982). This number is in general agreement with the typical number in other animal HMG-CoA reductase sequences (Olender & Simon, 1992). The ‘densem alignment surface’ (DAS) method (Cserzo et al., 1997) also predicts eight transmembrane domains, although the ‘topology prediction of membrane proteins’ (TopPred II) (von Heijne, 1992) was not able to recognize the number 4. The catalytic domain in the C-terminal region includes the His809, which is conserved in all HMG-CoA reductase sequences characterized to date (Bochar et al., 1999).

Comparative analysis with other species

The protein sequence of *A. ipsilon* is between 50 and 65% similar to that of other animal species (Fig. 4). Not surprisingly, maximal similarity was found with the HMG-CoA reductase sequence from the fruit fly, *D. melanogaster*, the closest relative from a phylogenetic point of view, with 65% similarity and 55% identity. These percentages are even higher when comparing the catalytic domain in the C-terminal region (80% of similarity and 71% identity). The **PILEUP** alignment of the HMG-CoA reductase sequence of *A. ipsilon* with other eukaryote species (not shown), which have the class I enzyme (Bochar et al., 1999), reveals a high degree of conservation, especially in the catalytic domain. For example, the boundaries of the motifs known as HMG-CoA reductase signature 1 (residues 590—604), signature 2 (residues 746—753) and signature 3 (residues 799—812), align well with the homologous regions of these HMG-CoA reductase sequences. A parsimony analysis carried out with the **PILEUP** alignment produced a tree (Fig. 5) with a topology congruent with the conventional phylogenetic schemes. In general, plant species are clustered in a phylogenetically logical manner, for example separating monocotyledonedonous (Zea, Oryza) from dicotyledonous (the remaining species), showing nodes that lead to plant family levels (Solanaeae: Solanum, Lycopersicon, Nicotiana, Capsicum; Brassicaceae: Raphanus 3 and 8, Arabidopsis 1). Although the representation is more limited, the species of fungi, protists and animals also generally cluster in phylogenetically coherent groups, with the fungi...
Lepidopteran HMG-coenzyme A reductase appearing as the sister group of animals, as in other protein-based phylogenies recently reported (see, for example, Doolittle et al., 1996).

Given the general phylogenetic congruence of the HMG-CoA reductase-based eukaryote tree (Fig. 5), a more precise analysis on animal species was carried out. Parsimony analysis based on the alignment generated by the PILEUP program from the GCG package (not further refined), and the PROTPARS program from PHYLIP package. Complete specific names and the corresponding GenBank accession numbers have been indicated in Experimental procedures.

Figure 4. Percentage of similarity (white columns) and identity (black columns) of the HMG-CoA reductase sequence of Agrotis ipsilon with respect to other animal species: Schistosoma mansoni, Drosophila melanogaster, Blattella germanica, Strongylocentrotus purpuratus, Xenopus laevis, Mus musculus, Homo sapiens, and Rattus norvegicus, Oryctolagus cuniculus and Homo sapiens. GenBank accession numbers have been indicated in Experimental procedures. The BESTFIT program from the GCG package was used.

Figure 5. Parsimony analysis of the amino acid sequences of HMG-CoA reductase in eukaryotes, using the alignment generated by the PILEUP program from the GCG package (not further refined), and the PROTPARS program from PHYLIP package. Complete specific names and the corresponding GenBank accession numbers have been indicated in Experimental procedures.

% Similarity

<table>
<thead>
<tr>
<th>Animal Species</th>
<th>Schistosoma mansoni</th>
<th>Drosophila melanogaster</th>
<th>Blattella germanica</th>
<th>Strongylocentrotus purpuratus</th>
<th>Xenopus laevis</th>
<th>Mus musculus</th>
<th>Homo sapiens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarity</td>
<td>40%</td>
<td>50%</td>
<td>55%</td>
<td>60%</td>
<td>65%</td>
<td>70%</td>
<td>75%</td>
</tr>
<tr>
<td>Identity</td>
<td>45%</td>
<td>55%</td>
<td>60%</td>
<td>65%</td>
<td>70%</td>
<td>75%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Percentage of similarity (white columns) and identity (black columns) of the HMG-CoA reductase sequence of Agrotis ipsilon with respect to other animal species: Schistosoma mansoni, Drosophila melanogaster, Blattella germanica, Strongylocentrotus purpuratus, Xenopus laevis, Mus musculus, Homo sapiens, and Rattus norvegicus, Oryctolagus cuniculus and Homo sapiens. GenBank accession numbers have been indicated in Experimental procedures.
photoperiod according to Poitout & Buès (1974). Day 0 refers to maintained at 21°C. Adult moths of eukaryote groups. this particular enzyme, but also in phylogeny reconstruction as a useful tool not only to study the molecular evolution of appears to be phylogenetically informative, and could be according to the taxonomic divergence. This suggest that as occurs in other eukaryotes (Fig. 5). It seems that during reflects the phylogeny of the insect groups included in it, in the CA cannot be ruled out. different HMG-CoA reductase form is specifically expressed is expressed in the CA. However, the possibility that a dif- ferent HMG-CoA reductase catalytic domain (Martinez-Gonzalez previously designed from highly conserved amino acid sequences of the HMG-CoA reductase catalytic domain (Martínez-Gonzalez et al., 1993). The resulting cDNAs were directly used for PCR amplification with the following final conditions: 100 µL final volume of 1× PCR buffer provided by the manufacturer, 1 µL of primers, 2 mM MgCl₂, 0.2 mM of each dNTP, 2.5 U of Taq DNA polymerase (Perkin Elmer). PCR was carried out in a Perkin Elmer Gene Amp PCR System 2400 programmed for thirty-five cycles (1 min at 94°C, 30 s at 50°C, 1.30 min at 72°C). Primers were two degenerate set previously designed from highly conserved amino acid sequences of the HMG-CoA reductase catalytic domain (Martínez-Gonzalez et al., 1993). Two PCR products of about 330 and 140 bp were obtained on a TAE (Tris-acetate 40 mM, EDTA 1 mM, pH 8.3), 2.5% agarose gel. The 330 bp PCR product was excised from the ethidium bromide stained gel and purified using Wizard PCR prep purification system (Promega). The PCR product was used as template for a second round of PCR amplification under the same conditions. The resulting PCR product was cloned using pCR-Script Amp SK(+) Cloning Kit (Stratagene) and clone PAHMGGR-1 was sequenced by Eurogentec (Seraing, Belgium). From PAHMGGR-1 sequence, the forward primer H1, 5′- GCCATCGGACATCGAGGAC-3′, and the reverse primer H2, 5′- CTCTGGGAAGGAGGAATC-3′, were designed and used to screen a cDNA library of A. ipsilon brain–subesophageal ganglion complex (Duportets et al., 1999). About n = 60 000 plu were plated following standard procedures and after an overnight growth sixteen equal portions of the top-agar were scraped and eluted in 500 µL of SM (NaCl 0.1 M, HgSO₄, 8 mM, Tris-HCl 50 mM, pH 7.5) buffer. Agar was eliminated by centrifugation (10 000 g, 10 min) and supernatants were used as template for PCR amplifi- cation with the following final conditions: 1 µL of primers H1 and H2, 1.5 mM MgCl₂, 0.2 mM of each dNTP and 1 U of Taq DNA polymerase (Applied) in a 50 µL final volume of 1× PCR buffer pro- vided by Applied. PCR was programmed for 1 min 45 s at 94°C (15 s at 94°C, 30 s at 48°C) + 7 min at 72°C. One of the fractions from the cDNA library that gave a PCR product of 183 bp was tittered, and an aliquot containing about five times the number of plaques count in the positive agar portion was replated, grown and portioned in sixteen equal parts each of which was PCR tested. The same procedure was repeated until the complete isolation of a single phage (λAIHMG-4) was achieved. Phagemid PAHMGGR-4 was excised from λAIHMGGR-4 and sequenced (Genome Express, Grenoble, France).

Experimental procedures

Insects

Adult moths A. ipsilon were reared on an artificial diet and maintained at 21 ± 1°C, 60% relative humidity and a 16L:8D photoperiod according to Poiltout & Bules (1974). Day 0 refers to the first day of the adult life. Adults were kept in plastic boxes and fed with a 20% sucrose solution.

Isolation and cloning of A. ipsilon HMG-CoA reductase

Twenty brain–subesophageal ganglion complexes including the corpora allata of adult moths were dissected out together and immediately frozen in liquid nitrogen, then stored at –80°C. Total RNA was isolated using TRIzol Reagent (Gibco BRL). An aliquot of total RNA (1 µg) was used as template for RT-PCR using the Gene Amp RNA PCR Kit (Perkin Elmer) with an oligo(dT) primer and according to the manufacturer’s recommendations.

The resulting cDNAs were directly used for PCR amplification with the following final conditions: 100 µL final volume of 1× PCR buffer provided by the manufacturer, 1 µL of primers, 2 mM MgCl₂, 0.2 mM of each dNTP, 2.5 U of Taq DNA polymerase (Perkin Elmer). PCR was carried out in a Perkin Elmer Gene Amp PCR System 2400 programmed for thirty-five cycles (1 min at 94°C, 30 s at 50°C, 1.30 min at 72°C). Primers were two degenerate set previously designed from highly conserved amino acid sequences of the HMG-CoA reductase catalytic domain (Martínez-Gonzalez et al., 1993). Two PCR products of about 330 and 140 bp were obtained on a TAE (Tris-acetate 40 mM, EDTA 1 mM, pH 8.3), 2.5% agarose gel. The 330 bp PCR product was excised from the ethidium bromide stained gel and purified using Wizard PCR prep purification system (Promega). The PCR product was used as template for a second round of PCR amplification under the same conditions. The resulting PCR product was cloned using pCR-Script Amp SK(+) Cloning Kit (Stratagene) and clone PAHMGGR-1 was sequenced by Eurogentec (Seraing, Belgium). From PAHMGGR-1 sequence, the forward primer H1, 5′- GCCATCGGACATCGAGGAC-3′, and the reverse primer H2, 5′- CTCTGGGAAGGAGGAATC-3′, were designed and used to screen a cDNA library of A. ipsilon brain–subesophageal ganglion complex (Duportets et al., 1999). About n = 60 000 plu were plated following standard procedures and after an overnight growth sixteen equal portions of the top-agar were scraped and eluted in 500 µL of SM (NaCl 0.1 M, HgSO₄, 8 mM, Tris-HCl 50 mM, pH 7.5) buffer. Agar was eliminated by centrifugation (10 000 g, 10 min) and supernatants were used as template for PCR amplifi- cation with the following final conditions: 1 µL of primers H1 and H2, 1.5 mM MgCl₂, 0.2 mM of each dNTP and 1 U of Taq DNA polymerase (Applied) in a 50 µL final volume of 1× PCR buffer pro- vided by Applied. PCR was programmed for 1 min 45 s at 94°C (15 s at 94°C, 30 s at 48°C) + 7 min at 72°C. One of the fractions from the cDNA library that gave a PCR product of 183 bp was tittered, and an aliquot containing about five times the number of plaques count in the positive agar portion was replated, grown and portioned in sixteen equal parts each of which was PCR tested. The same procedure was repeated until the complete isolation of a single phage (λAIHMG-4) was achieved. Phagemid PAHMGGR-4 was excised from λAIHMGGR-4 and sequenced (Genome Express, Grenoble, France).

Tissues expression of A. ipsilon HMG-CoA reductase

Five-day-old mated adult male and female moths were used to dissect out the tissues, which were immediately frozen at –80°C. Tissues sampled were fat body, ovary or muscles (~10 mg in the three cases), ten brains (~10 mg of tissue) and twenty pairs of CA (~10 ng of tissue in the case of males and ~20 ng in that of...
thermocycler. In the second, the enzyme mix was added before placing tubes in the external to the H1 / H2 primers. The expected size for PCR product was 236 bp.

According to conditions described above for library screening. A nested PCR was also performed using 1 µl of the H3/H4 RT-PCR product as template for amplification using H1/H2 primers according to conditions described above for library screening.

Sequence alignments and comparisons

For comparative purposes, in addition to the sequence from A. ipsilon described in the present paper (GenBank accession number AJ009675), we used the previously published amino acid sequences of HMG-CoA reductase of the following eukaryote species (GenBank accession number in parentheses): Arabidopsis thaliana (isoform 1) (A32107), A. thaliana (isoform 2) (P43256), Blattella germanica (S30338), Camptotheca accuminata (U72145), Candida utilis (AB012603), Capsicum annuum (AF110383), Catharanthus roseus (Q00163), Cricetulus griseus (A93328), Cucumis melo (AB021862), Dicyostelium discoideum (isoform A) (L19349), DROSPhila melanogaster (S32572), Gibberella fujikuroi (Q12615), Hevea brasiliensis (isoform 1) (S14955), H. brasiliensis (isoform 3) (S25252), Homo sapiens (A30356), Leithmania major (A155593), Lycopersicon esculentum (S25316), Mecocricetus auratus (A23586), Monos alba (U43711), Nicotiana sylvestris (S24760), N. tabacum (U60452), Oryctolagus cuniculus (Q29512), Oryza sativa (AF110383), Peucedanum ostruthium (S25623), P. oleraceum (S09625), P. sativum (M92949), Saccharomyces cerevisiae (isoform 1) (A03209), S. cerevisiae (isoform 2) (B30239), Schistosoma mansoni (A34416), Solanum tuberosum (S59944), Strongylocentrotus purpuratus (A31898), Tagetes erecta (isoform 1) (A034760), T. erecta (isoform 2) (A034761), Tyaphosoma crui (L78791), Xylenopsis laevis (A35728) and Zea mays (Y09238).

Software from Genetics Computer Group (GGC, v. 9.1), University of Wisconsin (Devereux et al., 1984), was used for sequence analysis. The hydrophobicity plot of the amino acid sequence was obtained with the application PEPLPLOT, which is based on the algorithm of Kyte & Doolittle (1982). Sequence alignments were carried out with the Phylogen Inference Package (PHYLIP, v. 3.57c) (Felsenstein, 1995), using amino acid sequence programs (PHYTAPARS program) (Swofford & Olsen, 1990). Bootstrap analyses were carried out with the application SEQBOOT in the PHYLIP package, and the procedure was repeated 100 times.

Data deposition

The sequence reported in this paper has been deposited in EMBL/Genebank/DDBJ databases (Accession number AJ009675).

Acknowledgements

We thank Dr Christophe Gadenne for providing and dissecting insects. Financial support from the DGICYT, Spain (project No PB95-0062) to XB and the Spanish–French program PICASSO are gratefully acknowledged.

References

